Exercise 20

In Exercises 17-24, find the unknown if the solution of each equation is given:

$$
\text { If } u(x)=e^{-x^{2}} \text { is a solution of } u(x)=1-\alpha \int_{0}^{x} t u(t) d t \text {, find } \alpha
$$

Solution

Substitute the solution into both sides of the equation.

$$
e^{-x^{2}}=1-\alpha \int_{0}^{x} t e^{-t^{2}} d t
$$

Make a substitution to evaluate the integral.

$$
\begin{aligned}
v & =t^{2} \\
d v & =2 t d t \quad \rightarrow \quad \frac{d v}{2}=t d t
\end{aligned}
$$

The equation becomes

$$
\begin{aligned}
e^{-x^{2}} & =1-\alpha \int_{0}^{x^{2}} e^{-v}\left(\frac{d v}{2}\right) \\
& =1-\frac{\alpha}{2} \int_{0}^{x^{2}} e^{-v} d v \\
& =1-\left.\frac{\alpha}{2}\left(-e^{-v}\right)\right|_{0} ^{x^{2}} \\
& =1-\frac{\alpha}{2}\left(-e^{-x^{2}}+1\right) .
\end{aligned}
$$

Subtract 1 from both sides.

$$
e^{-x^{2}}-1=-\frac{\alpha}{2}\left(-e^{-x^{2}}+1\right)
$$

Multiply both sides by -2 .

$$
2\left(-e^{-x^{2}}+1\right)=\alpha\left(-e^{-x^{2}}+1\right)
$$

Therefore,

$$
\alpha=2 .
$$

